题目内容
下列式子正确的个数是( )
①a>b⇒a3>b3
②log32<1<log23
③a>b⇒ac2>bc2
④不等式
>1与不等式x-2>x-5解集相同.
①a>b⇒a3>b3
②log32<1<log23
③a>b⇒ac2>bc2
④不等式
| x-2 |
| x-5 |
分析:根据幂函数y=x3为R上的单调增函数,判断出①正确;根据对数的运算性质,所以②正确;当c=0时,a>b不能推出ac2>bc2,所以③错误;根据分式不等式的解法判断,所以④错误.
解答:解:根据幂函数y=x3为R上的单调增函数,当a>b时,可以得到a3>b3,所以①正确;
根据log32<log33=1=log22<log23,所以②正确;
当c=0时,a>b不能推出ac2>bc2,所以③错误;
不等式
>1等价于
>0,即x>5,而不等式x-2>x-5的解为R,所以④错误.
故选B.
根据log32<log33=1=log22<log23,所以②正确;
当c=0时,a>b不能推出ac2>bc2,所以③错误;
不等式
| x-2 |
| x-5 |
| 3 |
| x-5 |
故选B.
点评:本题考察了不等式的性质,要特别注意“0”这个特殊的数.同时考察了对数的运算以及分式不等式的运算.属于基础题.
练习册系列答案
相关题目