题目内容

如图,四边形ABCD是等腰梯形,AB∥CD,且AD=CD=1.由4个这样的等腰梯形可以拼出图乙所示的平行四边形,则该平行四边形的面积为   
【答案】分析:由于上底和两腰长已知,故要求梯形面积,关键是要找出底边上和高,由于图形中无法再分析出边与边的关系,所以我们可以从角的方向入手,求梯形的内角,进一步求出梯形的其它未知边长,进而求解平行四边形的面积.
解答:解:设等腰梯形的底角为θ,
则由图可知,θ+θ+θ=180°,即θ=60°.
由AD=CD=1知,
AB=CD+2AD•cos60°=2,
故梯形的面积为=
故平行四边形的面积为
故答案为:
点评:本小题主要考查梯形与平行四边形的有关知识,以及分析问题和解决问题的能力,以及转化与化归的思想方法.本题的切入点是求梯形的内角,如何由已知分析出该点,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网