题目内容
(Ⅰ)求证:A1B∥平面ADC1;
(Ⅱ)求证:C1A⊥B1C.
(Ⅲ)若AC=2,求点C到平面C1AD的距离.
分析:(I)欲证A1B∥平面ADC1,根据直线与平面平行的判定定理可知只需证A1B与平面ADC1内一直线平行,连接A1C交C1A与点O,连接DO,根据中位线定理可知DO∥A1B,而A1B?平面ADC1,BO?平面ADC1,满足定理所需条件;
(II)由(I)可知C1A⊥A1C,A1B1⊥C1A而A1B1∩A1C=A1,根据线面垂直的判定定理可知C1A⊥平面A1B1C,而B1C?平面A1B1C,根据线面垂直的性质可知C1A⊥B1C;
(III)根据题意可知CC1⊥面ABC,求出S△ACD与S△AC1D,设点C到平面C1AD的距离为d,最后根据等体积法VC-C1AD=VC1-CAD建立等式关系,求出d即可求出所求.
(II)由(I)可知C1A⊥A1C,A1B1⊥C1A而A1B1∩A1C=A1,根据线面垂直的判定定理可知C1A⊥平面A1B1C,而B1C?平面A1B1C,根据线面垂直的性质可知C1A⊥B1C;
(III)根据题意可知CC1⊥面ABC,求出S△ACD与S△AC1D,设点C到平面C1AD的距离为d,最后根据等体积法VC-C1AD=VC1-CAD建立等式关系,求出d即可求出所求.
解答:证明:(I)连接A1C交C1A与点O,连接DO
∵ACC1A1均为正方形∴点O为A1C的中点
而D为BC中点∴DO∥A1B
而A1B?平面ADC1,DO?平面ADC1,
∴A1B∥平面ADC1;
(II)由(I)可知C1A⊥A1C,而AB⊥平面ACC1A1,
而C1A?平面ACC1A1,则AB⊥C1A,而A1B1∥AB
∴A1B1⊥C1A而A1B1∩A1C=A1,
∴C1A⊥平面A1B1C,而B1C?平面A1B1C
∴C1A⊥B1C.
(III)根据题意可知CC1⊥面ABC,
S△ACD=1,AC1=2
,AD=
,C1D=
∴S△AC1D=
×
×
=
设点C到平面C1AD的距离为d
VC-C1AD=VC1-CAD=
×1×2=
×
×d
解得:d=
∴点C到平面C1AD的距离为
∵ACC1A1均为正方形∴点O为A1C的中点
而D为BC中点∴DO∥A1B
而A1B?平面ADC1,DO?平面ADC1,
∴A1B∥平面ADC1;
(II)由(I)可知C1A⊥A1C,而AB⊥平面ACC1A1,
而C1A?平面ACC1A1,则AB⊥C1A,而A1B1∥AB
∴A1B1⊥C1A而A1B1∩A1C=A1,
∴C1A⊥平面A1B1C,而B1C?平面A1B1C
∴C1A⊥B1C.
(III)根据题意可知CC1⊥面ABC,
S△ACD=1,AC1=2
| 2 |
| 2 |
| 6 |
∴S△AC1D=
| 1 |
| 2 |
| 2 |
| 6 |
| 3 |
设点C到平面C1AD的距离为d
VC-C1AD=VC1-CAD=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
解得:d=
2
| ||
| 3 |
∴点C到平面C1AD的距离为
2
| ||
| 3 |
点评:本题主要考查了线面平行的判定,以及线面垂直的性质和点到平面的距离,同时考查了空间想象能力、运算求解的能力、以及转化与划归的思想,属于中档题.
练习册系列答案
相关题目
| A、3:2 | B、7:5 | C、8:5 | D、9:5 |