题目内容
(本题满分14分)直线过点,倾斜角的正弦是,求直线的方程.
解:因为倾斜角的范围是:,又由题意:,所以:,直线过点,由直线的点斜式方程得到:.即:或.
解析
(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点,
(1)求证:;
(2)当E是棱CC1中点时,求证:CF//平面AEB1;
(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
()(本题满分14分)如图,菱形与矩形所在平面互相垂直,.(Ⅰ)求证:平面;(Ⅱ)若,当二面角为直二面角时,求的值;(Ⅲ)在(Ⅱ)的条件下,求直线与平面所成的角的正弦值.
如图, 在直三棱柱中,,,.
(2)问:是否在线段上存在一点,使得平面?
若存在,请证明;若不存在,请说明理由。
(本题满分14分)如图, 在直三棱柱中,,,
,点是的中点.
⑴求证:;
⑵求证:平面;
⑶求二面角的正切值.
(本题满分14分) 已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC
沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。
(Ⅰ) 证明:BE⊥CD’;
(Ⅱ) 求二面角D'-BC -E的余弦值,