题目内容

已知a,b,c分别为△ABC三个内角A,B,C的对边,
(1)求角A;
(2)若a=2,△ABC的面积为,求b,c.
【答案】分析:(1)把已知的等式利用正弦定理化简,根据sinC不为0,得到一个关系式,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用特殊角的三角函数值求出A的度数即可;
(2)由A的度数求出sinA和cosA的值,由三角形ABC的面积,利用面积公式及sinA的值,求出bc的值,记作①;由a与cosA的值,利用余弦定理列出关系式,利用完全平方公式变形后,把bc的值代入求出b+c的值,记作②,联立①②即可求出b与c的值.
解答:解:(1)由正弦定理==化简已知的等式得:sinC=sinAsinC-sinCcosA,
∵C为三角形的内角,∴sinC≠0,
sinA-cosA=1,
整理得:2sin(A-)=1,即sin(A-)=
∴A-=或A-=
解得:A=或A=π(舍去),
则A=
(2)∵a=2,sinA=,cosA=,△ABC的面积为
bcsinA=bc=,即bc=4①;
∴由余弦定理a2=b2+c2-2bccosA得:4=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
整理得:b+c=4②,
联立①②解得:b=c=2.
点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网