题目内容

已知数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*)
(1)求数列{an}的通项an
(2)设bn=
1
anan+1
,求证:b1+b2+…+bn
1
4
分析:(1)由数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*),推导出
an
an-1
=
n
n-1
,由此利用累加法能求出an
(2)由an=2n,知bn=
1
anan+1
=
1
2n•(2n+2)
=
1
4
(
1
n
-
1
n+1
)
,由此利用裂项求和法能够证明b1+b2+…+bn
1
4
解答:解:(1)∵数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*)
∴2Sn-1=nan-1,∴2an=(n+1)an-nan-1
an
an-1
=
n
n-1

a2
a1
=
2
1
a3
a2
=
3
2
a4
a3
=
4
3
,…,
an
an-1
=
n
n-1

∴an=a1×
a2
a1
×
a3
a2
×
a4
a3
×…×
an
an-1

=2×
2
1
×
3
2
×
4
3
×…×
n
n-1
=2n.
(2)∵an=2n,
bn=
1
anan+1
=
1
2n•(2n+2)
=
1
4
(
1
n
-
1
n+1
)

b1+b2+…+bn 
=
1
4
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=
1
4
(1-
1
n+1
)
1
4

b1+b2+…+bn
1
4
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,仔细解答,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网