题目内容
已知数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*).
(1)求数列{an}的通项an;
(2)设bn=
,求证:b1+b2+…+bn<
.
(1)求数列{an}的通项an;
(2)设bn=
| 1 |
| an•an+1 |
| 1 |
| 4 |
分析:(1)由数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*),推导出
=
,由此利用累加法能求出an.
(2)由an=2n,知bn=
=
=
(
-
),由此利用裂项求和法能够证明b1+b2+…+bn<
.
| an |
| an-1 |
| n |
| n-1 |
(2)由an=2n,知bn=
| 1 |
| an•an+1 |
| 1 |
| 2n•(2n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
解答:解:(1)∵数列{an}的前n项和为Sn,且a1=2,2Sn=(n+1)an(n∈N*),
∴2Sn-1=nan-1,∴2an=(n+1)an-nan-1,
∴
=
,
∴
=
,
=
,
=
,…,
=
,
∴an=a1×
×
×
×…×
=2×
×
×
×…×
=2n.
(2)∵an=2n,
∴bn=
=
=
(
-
),
∴b1+b2+…+bn
=
(1-
+
-
+…+
-
)
=
(1-
)<
.
故b1+b2+…+bn<
.
∴2Sn-1=nan-1,∴2an=(n+1)an-nan-1,
∴
| an |
| an-1 |
| n |
| n-1 |
∴
| a2 |
| a1 |
| 2 |
| 1 |
| a3 |
| a2 |
| 3 |
| 2 |
| a4 |
| a3 |
| 4 |
| 3 |
| an |
| an-1 |
| n |
| n-1 |
∴an=a1×
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| an |
| an-1 |
=2×
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n |
| n-1 |
(2)∵an=2n,
∴bn=
| 1 |
| an•an+1 |
| 1 |
| 2n•(2n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴b1+b2+…+bn
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
故b1+b2+…+bn<
| 1 |
| 4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,仔细解答,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |