ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{4}{x}£¬x¡Ê[-8£¬-4£©}\\{-9-x£¬x¡Ê[-4£¬1£©}\\{x-\frac{8}{x}-3£¬x¡Ê[1£¬8]}\end{array}\right.$£®£¨1£©Çóf£¨x£©µÄÖµÓò
£¨2£©É躯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]£¬Èô¶ÔÈÎÒâµÄx1¡Ê[-8£¬8]£¬×Ü´æÔÚx0¡Ê[-8£¬8]£¬Ê¹µÃg£¨x0£©=f£¨x1£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©·ÖÎöº¯ÊýµÄµ¥µ÷ÐÔ£¬½ø¶øÖð¶ÎÇó³ö¸÷¶ÎµÄÖµÓò£¬×îºó×ۺϷֶÎÌÖÂ۵Ľá¹û£¬¿ÉµÃf£¨x£©µÄÖµÓòA£»
£¨2£©Çó³öº¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]µÄÖµÓòB£¬½áºÏÌâÒ⣬½«Æä»¯ÎªA⊆B£¬¿ÉµÃʵÊýaµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©µ±x¡Ê[-8£¬-4£©Ê±£¬º¯Êýf£¨x£©=x+$\frac{4}{x}$ΪÔöº¯Êý£¬´Ëʱf£¨x£©¡Ê[$-\frac{17}{2}$£¬-5£©£¬
µ±x¡Ê[-4£¬1£©Ê±£¬º¯Êýf£¨x£©=-9-xΪ¼õº¯Êý£¬´Ëʱf£¨x£©¡Ê£¨-10£¬-5]£¬
µ±x¡Ê[1£¬8]ʱ£¬º¯Êýf£¨x£©=x-$\frac{8}{x}$-3Ϊ¼õº¯Êý£¬´Ëʱf£¨x£©¡Ê[-10£¬4]£¬
×ÛÉÏf£¨x£©µÄÖµÓòA=[-10£¬4]£¬
£¨2£©É躯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]µÄÖµÓòB£¬
Èô¶ÔÈÎÒâµÄx1¡Ê[-8£¬8]£¬×Ü´æÔÚx0¡Ê[-8£¬8]£¬Ê¹µÃg£¨x0£©=f£¨x1£©³ÉÁ¢£¬
ÔòA⊆B£¬
ÏÔÈ»a=0ʱ£¬²»Âú×ãÌâÒ⣬
µ±a£¾0ʱ£¬º¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]ΪÔöº¯Êý£¬B=[-8a+5£¬8a+5]£¬
Ôò$\left\{\begin{array}{l}-8a+5¡Ü-10\\ 8a+5¡Ý4\\ a£¾0\end{array}\right.$£¬½âµÃ£ºa¡Ý$\frac{15}{8}$£¬
µ±a£¾0ʱ£¬º¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]Ϊ¼õº¯Êý£¬B=[8a+5£¬-8a+5]£¬
Ôò$\left\{\begin{array}{l}8a+5¡Ü-10\\-8a+5¡Ý4\\ a£¼0\end{array}\right.$£¬½âµÃ£ºa¡Ü-$\frac{15}{8}$£¬
×ÛÉÏËùÊö£¬ÊµÊýaµÄȡֵ·¶Î§Îªa¡Ü-$\frac{15}{8}$£¬»òa¡Ý$\frac{15}{8}$£®
µãÆÀ ±¾Ì⿼²éÁ˺¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷£¬º¯Êý×îÖµµÃÓ¦Óã®×¢ÒâÒ»°ãµ¥µ÷ÐÔµÄÖ¤Ã÷Ñ¡Óö¨Òå·¨Ö¤Ã÷£¬Ö¤Ã÷µÄ²½ÖèÊÇ£ºÉèÖµ£¬×÷²î£¬»¯¼ò£¬¶¨ºÅ£¬Ï½áÂÛ£®¶ÔÓÚº¯ÊýµÄÖµÓòµÄÇó½â£¬Òª×¢Ò⿼ÂǶ¨ÒåÓòµÄȡֵ£¬ÔÙ¸ù¾Ýº¯ÊýµÄ½âÎöʽ½øÐÐÅжϸÃʹÓúÎÖÖ·½·¨Çó½âÖµÓò£¬±¾ÌâÑ¡ÓÃÁËÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇó½âº¯ÊýµÄÖµÓò£®ÊôÓÚÖеµÌ⣮
| A£® | $\frac{1}{{2}^{x}}$ | B£® | 2x-2 | C£® | log${\;}_{\frac{1}{2}}$x | D£® | log2x |
| A£® | £¨x+1£©2+£¨y+3£©2=36 | B£® | £¨x+1£©2+£¨y+3£©2=12 | C£® | £¨x-1£©2+£¨y+3£©2=36 | D£® | £¨x-1£©2+£¨y-3£©2=12 |