题目内容
(Ⅰ)证明:AP⊥BC;
(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B-AP-C的大小.
分析:(I)由题意.因为PO⊥平面ABC,垂足O落在线段AD上所以BC⊥PO.有AB=AC,D为BC的中点,得到BC⊥AD,进而得到线面垂直,即可得到所证;
(II)有(I)利用面面垂直的判定得到PA⊥平面BMC,再利用二面角的定义得到二面角的平面角,然后求出即可.
(II)有(I)利用面面垂直的判定得到PA⊥平面BMC,再利用二面角的定义得到二面角的平面角,然后求出即可.
解答:
解:(I)由题意画出图如下:
由AB=AC,D为BC的中点,得AD⊥BC,
又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,
∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.
(II)如图,在平面PAB中作BM⊥PA于M,连接CM,
∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B-AP-C的平面角,
在直角三角形ADB中,AB2=AD2+BD2=41 得:AB=
;
在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6,
在直角三角形POA中,PA2=AO2+OP2=25,得PA=5,
又cos∠BPA=
=
,从而sin∠BPA=
.
故BM=PBsin∠BPA=4
.同理:CM=4
,
∵BM2+MC2=BC2,∴二面角B-AP-C的大小为90°.
由AB=AC,D为BC的中点,得AD⊥BC,
又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,
∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.
(II)如图,在平面PAB中作BM⊥PA于M,连接CM,
∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B-AP-C的平面角,
在直角三角形ADB中,AB2=AD2+BD2=41 得:AB=
| 41 |
在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6,
在直角三角形POA中,PA2=AO2+OP2=25,得PA=5,
又cos∠BPA=
| PA2+PB2-AB2 |
| 2PA•PB |
| 1 |
| 3 |
2
| ||
| 3 |
故BM=PBsin∠BPA=4
| 2 |
| 2 |
∵BM2+MC2=BC2,∴二面角B-AP-C的大小为90°.
点评:(I)此问考查了线面垂直的判定定理,还考查了线面垂直的性质定理;
(II)此问考查了面面垂直的判定定理,二面角的平面角的定义,还考查了在三角形中求解.
(II)此问考查了面面垂直的判定定理,二面角的平面角的定义,还考查了在三角形中求解.
练习册系列答案
相关题目