题目内容

已知拋物线的顶点在原点,它的准线过双曲线-=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线交于点P(),求拋物线方程和双曲线方程.
【答案】分析:首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过P(),求出c、p的值,进而结合双曲线的性质a2+b2=c2,求解即可.
解答:解:设拋物线方程为y2=2px(p>0),
∵点()在拋物线上,∴6=2p•,∴p=2,
∴所求拋物线方程为y2=4x.
∵双曲线左焦点在拋物线的准线x=-1上,
∴c=1,即a2+b2=1,又点()在双曲线上,
,解得
∴所求双曲线方程为-=1,即
点评:本题考查了抛物线和双曲线方程的求法:待定系数法,熟练掌握圆锥曲线的性质是解题的关键,同时考查了学生的基本运算能力与运算技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网