题目内容
求数列
,
,
,
,…,
的前n项和.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 7 |
| 16 |
| 2n-1 |
| 2n |
设Sn=
+
+
+
+…+
则
Sn=
+
+
+…+
+
两式相减得
Sn=
+(
+
+
+…+
)-
=
+(
+
+
+…+
)-
=
+
-
=
-(
)n-1-
∴Sn=3-
.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 7 |
| 16 |
| 2n-1 |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 8 |
| 5 |
| 16 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 4 |
| 2 |
| 8 |
| 2 |
| 16 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
=
| 3 |
| 2 |
| 1 |
| 2 |
| 2n-1 |
| 2n+1 |
∴Sn=3-
| 2n+3 |
| 2n |
练习册系列答案
相关题目