题目内容
已知函数f(x)=|sinx|.
(1)若g(x)=ax﹣f(x)≥0对任意x∈[0,+∞)恒成立,求实数a的取值范围;
(2)若函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个公共点,且公共点的横坐标的最大值为α,求证:
.
(1)若g(x)=ax﹣f(x)≥0对任意x∈[0,+∞)恒成立,求实数a的取值范围;
(2)若函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个公共点,且公共点的横坐标的最大值为α,求证:
解:(1)根据图象可知,我们只需要考虑
,
此时g(x)=ax﹣sinx
所以g′(x)=a﹣cosx
当a≥1时,g′(x)≥0,易知函数g(x)单调增,
从而g(x)≥g(0)=0,符合题意;
当a≤0,g′(x)<0,函数g(x)单调减,从而g(x)≤g(0) 不符合题意;
当0<a<1时,显然存在
,使得g′(x)=0,且x∈[0,x0)时函数g(x)单调减,
从而g(x)≤g(0)=0,不符合题意.
综上讨论知a≥1.
(2)f(x)的图象与直线y=kx(k>0)有且仅有三个公共点时如图所示,
且在
内相切,其切点为A(α,﹣sinα),
由于f′(x)=﹣cosx,
,
则
故
.
此时g(x)=ax﹣sinx
所以g′(x)=a﹣cosx
当a≥1时,g′(x)≥0,易知函数g(x)单调增,
从而g(x)≥g(0)=0,符合题意;
当a≤0,g′(x)<0,函数g(x)单调减,从而g(x)≤g(0) 不符合题意;
当0<a<1时,显然存在
从而g(x)≤g(0)=0,不符合题意.
综上讨论知a≥1.
(2)f(x)的图象与直线y=kx(k>0)有且仅有三个公共点时如图所示,
且在
由于f′(x)=﹣cosx,
则
故
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|