题目内容

若|a|<2,则
lim
n→∞
1+2+4+…+2n
2n+an
=______.
∵1+2+4+…+2n=
1-2n+1
1-2
=2n+1-1
lim
n→∞
1+2+4+…+2n
2n+an
=
lim
n→∞
2n+1-1
2n+an
=
lim
n→∞
2 -
1
2n
1+(
a
2
) n

∵|a|<2,得(
a
2
)n
→0,n→∞
lim
n→∞
2 -
1
2n
1+(
a
2
) n
=
2-0
1+0
=2
故答案为:2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网