题目内容
已知函数f(x)=2acos2x+
asin2x+a+b,x∈[0,
],值域[-5,1],求常数a、b的值.
| 3 |
| π |
| 2 |
f(x)=2acos2x+
asin2x+a+b
=a(1+cos2x)+
asin2x+a+b
=acos2x+
sin2x+2a+b
=2asin(2x+
)+2a+b
∵0≤x≤
∴
≤2x+
≤
-
≤sin(2x+
)≤1
当a>0时
当a<0时
∴a=2,b=-7或a=-2,b=3
| 3 |
=a(1+cos2x)+
| 3 |
=acos2x+
| 3 |
=2asin(2x+
| π |
| 6 |
∵0≤x≤
| π |
| 2 |
∴
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
当a>0时
|
|
当a<0时
|
|
∴a=2,b=-7或a=-2,b=3
练习册系列答案
相关题目