题目内容
已知f(x)为二次函数,不等式f(x)+2<0的解集为( -1,
),且对任意α,β∈R恒有f(sinα)≤0,f(2+cosβ)≥0.数列an满足a1=1,3an+1=1-
(n∈N×)
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设bn=
,求数列bn的通项公式;
(Ⅲ)若(Ⅱ)中数列bn的前n项和为Sn,求数列Sn•cos(bnπ)的前n项和Tn.
| 1 |
| 3 |
| 1 |
| f′(an) |
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设bn=
| 1 |
| an |
(Ⅲ)若(Ⅱ)中数列bn的前n项和为Sn,求数列Sn•cos(bnπ)的前n项和Tn.
(Ⅰ)依题意,f(x)+2=a(x+1)(x-
)(a>0),
即f(x)=ax2+
x-
-2
令α=
,β=π,则sinα=1,cosβ=-1,有f(1)≤0,f(2-1)≥0,
得f(1)=0,即a+
-
-2=0,得a=
.
∴f(x)=
x2+x-
.-(4分)
(Ⅱ)f'(x)=3x+1,则3an+1=1-
=1-
=
即an+1=
,两边取倒数,得
=3+
,即bn+1=3+bn.
∴数列bn是首项为b1=
=1,公差为3的等差数列.
∴bn=1+(n-1)•3=3n-2(n∈N*).(9分)
(Ⅲ)∵cos(bnπ)=cos(3n-2)π=cos(nπ)=(-1)n
∴Sn•cos(bnπ)=(-1)n•Sn∴Tn=-S1+S2-S3+S4-+(-1)nSn.
(1)当n为偶数时Tn=(S2-S1)+(S4-S3)++(Sn-Sn-1)=b2+b4++bn
=
=
(4+3n-2)=
(2)当n为奇数时Tn=Tn-1-Sn=
-
=
综上,Tn=
(13分)
| 1 |
| 3 |
即f(x)=ax2+
| 2a |
| 3 |
| a |
| 3 |
令α=
| π |
| 2 |
得f(1)=0,即a+
| 2a |
| 3 |
| a |
| 3 |
| 3 |
| 2 |
∴f(x)=
| 3 |
| 2 |
| 5 |
| 2 |
(Ⅱ)f'(x)=3x+1,则3an+1=1-
| 1 |
| f′(an) |
| 1 |
| 3an+1 |
| 3an |
| 3an+1 |
即an+1=
| an |
| 3an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列bn是首项为b1=
| 1 |
| a1 |
∴bn=1+(n-1)•3=3n-2(n∈N*).(9分)
(Ⅲ)∵cos(bnπ)=cos(3n-2)π=cos(nπ)=(-1)n
∴Sn•cos(bnπ)=(-1)n•Sn∴Tn=-S1+S2-S3+S4-+(-1)nSn.
(1)当n为偶数时Tn=(S2-S1)+(S4-S3)++(Sn-Sn-1)=b2+b4++bn
=
| ||
| 2 |
| n |
| 4 |
| 3n2+2n |
| 4 |
(2)当n为奇数时Tn=Tn-1-Sn=
| 3 (n-1)2+2 (n-1) |
| 4 |
| n (1+3n-2) |
| 2 |
| -3n2-2n+1 |
| 4 |
综上,Tn=
|
练习册系列答案
相关题目