题目内容
已知函数f(x)=sinx+
cosx,设a=f(
),b=f(
),c=f(
),则a,b,c的大小关系是( )
| 3 |
| π |
| 7 |
| π |
| 6 |
| π |
| 3 |
| A.a<b<c | B.c<a<b | C.b<a<c | D.b<c<a |
∵f(x)=sinx+
cosx=2sin(x+
),
∴a=f(
)=2sin(
+
)=2sin
,
b=f(
)=2sin(
+
)=2sin
,
c=f(
)=2sin(
+
)=2sin(
)=
.
∵y=sinx在(
,π)上单调递减,而
<
<
<π
∴b>a>c.
故选B.
| 3 |
| π |
| 3 |
∴a=f(
| π |
| 7 |
| π |
| 7 |
| π |
| 3 |
| 10π |
| 21 |
b=f(
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
c=f(
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 14π |
| 21 |
| 3 |
∵y=sinx在(
| π |
| 2 |
| π |
| 2 |
| 10π |
| 21 |
| 14π |
| 21 |
∴b>a>c.
故选B.
练习册系列答案
相关题目