题目内容

(本小题满分12分)(注意:在试题卷上作答无效)

已知函数.

(Ⅰ)若,求的取值范围;

(Ⅱ)证明: .

 

【答案】

(Ⅰ)

(Ⅱ)证明见解析

【解析】本小题主要考查函数导数的求法、导数的应用、不等式的恒成立问题、不等式的证明,同时考查转化的思想、逻辑思维能力、运算能力、综合分析与解决问题的能力.

(Ⅰ)

        ,

题设等价于.

,则

;当时,的最大值点,

       

 综上,的取值范围是.

(Ⅱ)有(Ⅰ)知,.

时,

时,

         

               

              

               

所以

点评:本题考法相对新颖,特别是第(Ⅰ)小题在所求问题的设置上打破常规,不是单纯考查利用导数研究函数的几何意义、单调性、极值、最值,而是将这些知识融入一个不等式恒成立求参数范围问题中,这符合“稳中求变”的高考命题原则.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网