题目内容
已知函数f(x)=|lgx|,0<a<b,且f(a)>f(b),则( )
| A.ab>1 | B.ab=1 | C.ab<1 | D.b<1 |
由题意|lga|>|lgb|,因为0<a<b,所以
①1≤a<b时,由y=lgx在(0,+∞)上单调递增,所以0≤lga<lgb,所以|lga|<|lgb|,不合要求
②0<a<1<b时,lga<0,lgb>0,由|lga|>|lgb|,得-lga>lgb,即lga+lgb=lgab<0,所以ab<1.
故选C.
①1≤a<b时,由y=lgx在(0,+∞)上单调递增,所以0≤lga<lgb,所以|lga|<|lgb|,不合要求
②0<a<1<b时,lga<0,lgb>0,由|lga|>|lgb|,得-lga>lgb,即lga+lgb=lgab<0,所以ab<1.
故选C.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|