题目内容

已知函数f(x)=ax-2lnx,a∈R.
(Ⅰ)当a=3时,求函数f(x)在(1,f(1))的切线方程.
(Ⅱ)求函数f(x)的极值.
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线lP1P2,则称l为弦P1P2的伴随切线.当a=2时,已知两点A(1,f(1)),B(e,f(e)),试求弦AB的伴随切线l的方程.
(I)当a=3时,f(x)=3x-2lnx,则f(1)=3,f′(x)=3-
2
x

∴f'(1)=1
∴切线方程为y-3=x-1即x-y+2=0…(4分)
(Ⅱ)f′(x)=a-
2
x
,x>0

当a≤0时,f'(x)<0,函数f(x)在(0,+∞)内是减函数,∴函数f(x)没有极值.        …(6分)
当a>0时,令f'(x)=0,得x=
2
a

当x变化时,f'(x)与f(x)变化情况如下表:
 x (0,
2
a
)
2
a
(
2
a
,+∞)
f'(x) - 0 +
f(x) 单调递减 极小值 单调递增
∴当x=
2
a
时,f(x)取得极小值f(
2
a
)=2-2ln
2
a

综上,当a≤0时,f(x)没有极值;
当a>0时,f(x)的极小值为2-2ln
2
a
,没有极小值.…(9分)
(Ⅲ)当a=2时,设切点Q(x0,y0),则切线l的斜率为f′(x0)=2-
2
x0
x0∈(1,e)

弦AB的斜率为kAB=
f(e)-f(1)
e-1
=
2(e-1)-2(1-0)
e-1
=2-
2
e-1
. …(10分)
由已知得,lAB,则2-
2
x0
=2-
2
e-1
,解得x0=e-1,…(12分)
所以,弦AB的伴随切线l的方程为:y=
2e-4
e-1
x+2-2ln(e-1)
.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网