题目内容

如图,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1,D为AB的中点,且CD⊥DA1
(1)求证:BC1平面DCA1
(2)求BC1与平面ABB1A1所成角的大小.
精英家教网
证明:(1)如图一,连接AC1与A1C交于点K,连接DK.
在△ABC1中,D、K为中点,∴DKBC1、(4分)
又DK?平面DCA1,BC1?平面DCA1,∴BC1平面DCA1、(6分)

精英家教网

精英家教网

精英家教网

图一         图二        图三
(2)证明:(方法一)如图二,∵AC=BC,D为AB的中点,∴CD⊥AB、
又CD⊥DA1,AB∩DA1=D,∴CD⊥平面ABB1A1、(8分)
取A1B1的中点E,又D为AB的中点,∴DE、BB1、CC1平行且相等,
∴DCC1E是平行四边形,∴C1E、CD平行且相等.
又CD⊥平面ABB1A1,∴C1E⊥平面ABB1A1,∴∠EBC1即所求角、(10分)
由前面证明知CD⊥平面ABB1A1,∴CD⊥BB1
又AB⊥BB1,AB∩CD=D,∴BB1⊥平面ABC,∴此三棱柱为直棱柱.
设AC=BC=BB1=2,∴BC1=2
2
EC1=
2
,∠EBC1=30°、(12分)
(方法二)如图三,∵AC=BC,D为AB的中点,∴CD⊥AB、
又CD⊥DA1,AB∩DA1=D,∴CD⊥平面ABB1A1、(8分)
取DA1的中点F,则KFCD,∴KF⊥平面ABB1A1
∴∠KDF即BC1与平面ABB1A1所成的角.(10分)
由前面证明知CD⊥平面ABB1A1,∴CD⊥BB1
又AB⊥BB1,AB∩CD=D,∴BB1⊥平面ABC,∴此三棱柱为直棱柱.
设AC=BC=BB1=2,∴KF=
2
2
DK=
2
,∴∠KDF=30°、(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网