题目内容

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与直线x+y-1=0相交于P、Q两点,且
OP
OQ
(O为坐标原点).
(Ⅰ)求证:
1
a2
+
1
b2
等于定值;
(Ⅱ)当椭圆的离心率e∈[
3
3
2
2
]
时,求椭圆长轴长的取值范围.
(1)证明:
b2x2+a2y2=a2b2
x+y-1=0

消去y得(a2+b2)x2-2a2x+a2(1-b2)=0
△=4a4-4(a2+b2)a2(1-b2)>0,a2+b2>1
设点P(x1,y1),Q(x2,y2),
x1+x2=
2a2
a2+b2
x1x2=
a2(1-b2)
a2+b2

OP
OQ
=0
,x1x2+y1y2=0,
即x1x2+(1-x1)(1-x2)=0
化简得2x1x2-(x1+x2)+1=0,
2a2(1-b2)
a2+b2
-
2a2
a2+b2
+1=0

即a2+b2=2a2b2,故
1
a2
+
1
b2
=2

(Ⅱ)由e=
c
a
b2=a2-c2a2+b2=2a2b2

化简得a2=
2-e2
2(1-e2)
=
1
2
+
1
2(1-e2)

e∈[
3
3
2
2
]
a2∈[
5
4
3
2
]

a∈[
5
2
6
2
]

故椭圆的长轴长的取值范围是[
5
6
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网