题目内容
20.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x (℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a已知回归直线方程是:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
分析 (1)根据古典概型的概率,求出基本事件数,计算对应的概率即可;
(2)计算平均数$\overline{x}$、$\overline{y}$,由公式求出系数b与a,得出线性回归方程;
(3)由线性回归方程验证(2)中得到的线性回归方程是否可靠.
解答 解:(1)设抽到不相邻两组数据为事件A,
因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,
其中抽到相邻两组数据的情况有4种,
所以P(A)=1-$\frac{4}{10}$=$\frac{3}{5}$;---(4分)
(2)由数据,得$\overline{x}$=$\frac{1}{5}$(10+11+13+12+8)=10.8,
$\overline{y}$=$\frac{1}{5}$(23+25+30+26+16)=24,
由公式,得b=$\frac{(10×23+11×25+13×30+12×26+8×16)-5×10.8×24}{{(10}^{2}{+11}^{2}{+13}^{2}{+12}^{2}{+8}^{2})-5{×10.8}^{2}}$≈2.6,
a=$\overline{y}$-b$\overline{x}$=24-2.6×10.8≈-4;
所以y关于x的线性回归方程为$\stackrel{∧}{y}$=2.6x-4;---(8分)
(3)当x=10时,$\stackrel{∧}{y}$=2.6×10-4=22,|22-23|<2;
同样,当x=11时,$\stackrel{∧}{y}$=2.6×11-4=24.6,|24.6-25|<2;
当x=12时,$\stackrel{∧}{y}$=2.6×12-4=27.2,|27.2-26|<2;
当x=13时,$\stackrel{∧}{y}$=2.6×13-4=29.8,|29.8-30|<2;
当x=8时,$\stackrel{∧}{y}$=2.6×8-4=16.8,|16.8-16|<2;
所以,该研究所得到的线性回归方程是可靠的.---(12分)
点评 本题考查了古典概型的概率计算问题,也考查了线性回归方程的求法与应用问题,是基础题目.
| A. | x-y-1=0 | B. | x+y+1=0 | C. | x-y+1=0 | D. | x+y-1=0 |