题目内容
已知数列{an}满足a1=t,an+1-an+2=0(t∈N*,n∈N*),则记数列{an}的通项公式an=
.
-2n+t+2
-2n+t+2
,若数列{an}的前n项和的最大值为f(t),则f(t)=
|
|
分析:由数列{an}满足a1=t,an+1-an+2=0(t∈N*,n∈N*),知数列{an}是首项为t,公差为-2的等差数列,由此能求出an和数列{an}的前n项和的最大值为f(t).
解答:解:∵数列{an}满足a1=t,an+1-an+2=0(t∈N*,n∈N*),
∴数列{an}是首项为t,公差为-2的等差数列,
∴an=t+(n-1)×(-2)=-2n+t+2.
∴数列{an}的前n项和
S=nt+
×(-2)=nt+n-n2=-[n2-(t+1)n]=-(n-
)2+
,
∵数列{an}的前n项和的最大值为f(t),
∴当t为偶数时,f(t)=-
+
=
;
当t为奇数时,f(t)=
.
故f(t)=
.
故答案为:-2n+t+2,
.
∴数列{an}是首项为t,公差为-2的等差数列,
∴an=t+(n-1)×(-2)=-2n+t+2.
∴数列{an}的前n项和
S=nt+
| n(n-1) |
| 2 |
| t+1 |
| 2 |
| (t+1)2 |
| 4 |
∵数列{an}的前n项和的最大值为f(t),
∴当t为偶数时,f(t)=-
| 1 |
| 4 |
| (t+1)2 |
| 4 |
| t2+2t |
| 4 |
当t为奇数时,f(t)=
| (t+1)2 |
| 4 |
故f(t)=
|
故答案为:-2n+t+2,
|
点评:本题考查等差数列的通项公式和前n项和最大值的求法,解题时要认真审题,注意配方法和数列的函数性质的灵活运用.
练习册系列答案
相关题目