题目内容

已知函数f(x)=sin(
π
2
-x)cosx-sinx•cos(π+x).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若A为锐角,且f(A)=1,BC=2,B=
π
3
,求AC边的长.
(Ⅰ)f(x)=cos2x+sinxcosx=
1
2
(cos2x+sin2x+1)=
2
2
sin(2x+
π
4
)+
1
2

∵ω=2,∴函数f(x)的最小正周期为π;
(Ⅱ)∵f(A)=
2
2
sin(2A+
π
4
)+
1
2
=1,
∴sin(2A+
π
4
)=
2
2

∵A为锐角,∴
π
4
<2A+
π
4
4

∴2A+
π
4
=
4
,即A=
π
4

∵BC=2,B=
π
3

∴由正弦定理
BC
sinA
=
AC
sinB
得:AC=
2sin
π
3
sin
π
4
=
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网