题目内容
已知函数f(x)=
x2+
x,数列{an}的前n项和为Sn,点(n,Sn),(n∈N+)都在函数y=f(x)的图象上,
(1)求{an}的通项公式;
(2)令bn=
,求{bn}的前n项和Tn;
(3)令cn=
+
,证明:2n<c1+c2+…+cn<2n+
,n∈N+.
| 1 |
| 2 |
| 3 |
| 2 |
(1)求{an}的通项公式;
(2)令bn=
| an |
| 2n-1 |
(3)令cn=
| an |
| an+1 |
| an+1 |
| an |
| 1 |
| 2 |
分析:(1)利用点(n,Sn),(n∈N+)都在函数y=f(x)的图象上,可得Sn=
n2+
n,再写一式,两式相减,即可求{an}的通项公式;
(2)求出数列{bn}的通项,利用错位相减法,即可求得{bn}的前n项和Tn;
(3)确定数列的通项,利用裂项法求和,即可证明结论.
| 1 |
| 2 |
| 3 |
| 2 |
(2)求出数列{bn}的通项,利用错位相减法,即可求得{bn}的前n项和Tn;
(3)确定数列的通项,利用裂项法求和,即可证明结论.
解答:(1)解:∵点(n,Sn),(n∈N+)都在函数y=f(x)的图象上,
∴Sn=
n2+
n
∴n≥2时,an=Sn-Sn-1=
n2+
n-[
(n-1)2+
(n-1)]=n+1
n=1时,也满足上式
∴an=n+1;
(2)解:bn=
=
∴Tn=b1+b2+…+bn=2•
+3•
+…+
∴
Tn=2•
+…+
+
两式相减可得
Tn=2•
+
+…+
-
=3-
-
;
(3)证明:cn=
+
=
+
=2+(
-
)
∴c1+c2+…+cn=2n+(
-
+
-
+…+
-
)=2n+
-
∴2n<c1+c2+…+cn<2n+
∴Sn=
| 1 |
| 2 |
| 3 |
| 2 |
∴n≥2时,an=Sn-Sn-1=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
n=1时,也满足上式
∴an=n+1;
(2)解:bn=
| an |
| 2n-1 |
| n+1 |
| 2n-1 |
∴Tn=b1+b2+…+bn=2•
| 1 |
| 20 |
| 1 |
| 2 |
| n+1 |
| 2n-1 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2n-1 |
| n+1 |
| 2n |
两式相减可得
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
(3)证明:cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴c1+c2+…+cn=2n+(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
∴2n<c1+c2+…+cn<2n+
| 1 |
| 2 |
点评:本题考查数列的通项与求和,考查不等式的证明,确定数列的通项,正确运用求和公式是关键.
练习册系列答案
相关题目