题目内容
设数列{an}满足a1=
,an+1=an2+an(n∈N*),记Sn=
+
+…+
,则S10的整数部分为( )
| 1 |
| 3 |
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
分析:由数列{an}满足a1=
,an+1=an2+an(n∈N*),知
=
×
=
-
,所以
=
-
,故S10=
-
+
-
+…+
-
=
-
,由此能够求出S10的整数部分.
| 1 |
| 3 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a10 |
| 1 |
| a11 |
| 1 |
| a1 |
| 1 |
| a11 |
解答:解:∵数列{an}满足a1=
,an+1=an2+an=an(an+1)(n∈N*),
∴
=
=
×
=
-
,
∴
=
-
,
∴S10=
-
+
-
+…+
-
=
-
,
∵a1=
,
a2=
+
=
,
a3=
+
=
,
a4=
+
>1,
又an+1>an,
∴a11>1,
∴0<
<1,
∵
=3,
∴S10的整数部分是2.
故选B.
| 1 |
| 3 |
∴
| 1 |
| an+1 |
| 1 |
| an(an+1) |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴S10=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a10 |
| 1 |
| a11 |
| 1 |
| a1 |
| 1 |
| a11 |
∵a1=
| 1 |
| 3 |
a2=
| 1 |
| 9 |
| 1 |
| 3 |
| 4 |
| 9 |
a3=
| 16 |
| 81 |
| 4 |
| 9 |
| 52 |
| 81 |
a4=
| 2704 |
| 6561 |
| 52 |
| 81 |
又an+1>an,
∴a11>1,
∴0<
| 1 |
| a11 |
∵
| 1 |
| a1 |
∴S10的整数部分是2.
故选B.
点评:本题考查数列的递推式,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|