题目内容

设数列{an}满足a1=
1
3
,an+1=an2+an(n∈N*),记Sn=
1
1+a1
+
1
1+a2
+…+
1
1+an
,则S10的整数部分为(  )
分析:由数列{an}满足a1=
1
3
,an+1=an2+an(n∈N*),知
1
an+1
=
1
an
×
1
an+1
=
1
an
-
1
an+1
,所以
1
an+1
=
1
an
-
1
an+1
,故S10=
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
a10
-
1
a11
=
1
a1
-
1
a11
,由此能够求出S10的整数部分.
解答:解:∵数列{an}满足a1=
1
3
,an+1=an2+an=an(an+1)(n∈N*),
1
an+1
=
1
an(an+1)
=
1
an
×
1
an+1
=
1
an
-
1
an+1

1
an+1
=
1
an
-
1
an+1

S10=
1
a1
-
1
a2
+
1
a2
-
1
a3
+…+
1
a10
-
1
a11
=
1
a1
-
1
a11

a1=
1
3

a2=
1
9
+
1
3
 =
4
9

a3=
16
81
+
4
9
=
52
81

a4=
2704
6561
+
52
81
>1,
又an+1>an
∴a11>1,
∴0<
1
a11
<1,
1
a1
=3

∴S10的整数部分是2.
故选B.
点评:本题考查数列的递推式,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网