题目内容

已知椭圆G的中心在坐标原点,离心率为
5
3
,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6.
(1)求椭圆G的方程;
(2)若∠F1NF2=90°,求△NF1F2的面积;
(3)若过点M(-2,1)的直线l与椭圆交于A、B两点,且A、B关于点M对称,求直线l的方程.
(1)设椭圆G的方程为:
x2
a2
+
y2
b2
=1
(a>b>0)半焦距为c.
2a=6
c
a
=
5
3

解得
a=3
c=
5

∴b2=a2-c2=9-5=4
所以椭圆G的方程为
x2
9
+
y2
4
=1

(2)若∠F1NF2=90°,
则在Rt△NF1F2中,|NF1|2+|NF2|2=|F1F2|2=20.
又因为|NF1|+|NF2|=6
解得|NF1|•|NF2|=8,
所以S△NF1F2=
1
2
|NF1|•|NF2|=4

(3)设A、B的坐标分别为(x1,y1),(x2,y2),M的坐标为(-2,1),
当k不存在时,A、B关于点M对称显然不可能.
从而可设直线l的方程为y=k(x+2)+1,
代入椭圆G的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0,
△=(36k2+18k)2-4(4+9k2)(36k2+36k-27)=16×9(5k2-4k+3)
=16×45[(k-
2
5
)
2
+
11
25
]>0

因为A,B关于点M对称,
所以
x1+x2
2
=-
18k2+9k
4+9k2
=-2
,解得k=
8
9

所以直线l的方程为y=
8
9
(x+2)+1

即8x-9y+25=0(经检验,符合题意).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网