题目内容
已知数列{an}的前n项和为Sn,且有Sn=
n2+
n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153;
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)设cn=
,数列{cn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值.
| 1 |
| 2 |
| 11 |
| 2 |
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)设cn=
| 3 |
| (2an-11)(2bn-1) |
| k |
| 57 |
分析:(1)因为数列{an}的前n项和为Sn,且有Sn=
n2+
n,利用公式an=Sn-Sn-1,求出an的通项公式;
(2)又因为bn+2-2bn+1+bn=0,所以数列{bn}为等差数列,根据等差数列的性质,求出bn的通项公式;
(3)由(1)可知an和bn的通项公式,代入cn=
,利用裂项法,求出前n项和Tn,根据不等式Tn>
,求出k的值;
| 1 |
| 2 |
| 11 |
| 2 |
(2)又因为bn+2-2bn+1+bn=0,所以数列{bn}为等差数列,根据等差数列的性质,求出bn的通项公式;
(3)由(1)可知an和bn的通项公式,代入cn=
| 3 |
| (2an-11)(2bn-1) |
| k |
| 57 |
解答:解:(1)因为Sn=
n2+
n,故
当n≥2时,an=Sn-Sn-1=n+5;当n=11时,a1=S1=6;满足上式;
所以an=n+5,
(2)又因为bn+2-2bn+1+bn=0,所以数列{bn}为等差数列;
由S9=
=153,b3=11,故b7=23;所以公差d=
=3;
所以:bn=b3+(n-3)d=3n+2;
(3)由(1)知:Cn=
=
,
而Cn=
=
=
(
-
)
所以:Tn=c1+c2+c3+c4+…+cn=
[1-
+
-
+…+
-
]
=
(1-
)=
,
又因为Tn+1-Tn=
-
=
>0;
所以{Tn}是单调递增,故(Tn)min=T1=
;
由题意可知
>
;得k<19,所以k的最大正整数为18;
| 1 |
| 2 |
| 11 |
| 2 |
当n≥2时,an=Sn-Sn-1=n+5;当n=11时,a1=S1=6;满足上式;
所以an=n+5,
(2)又因为bn+2-2bn+1+bn=0,所以数列{bn}为等差数列;
由S9=
| 9(b3+b7) |
| 2 |
| 23-11 |
| 7-3 |
所以:bn=b3+(n-3)d=3n+2;
(3)由(1)知:Cn=
| 3 |
| (2an-11)(2bn-1) |
| 1 |
| (2n-1)(2n+1) |
而Cn=
| 3 |
| (2an-11)(2bn-1) |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以:Tn=c1+c2+c3+c4+…+cn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
又因为Tn+1-Tn=
| n+1 |
| 2n+3 |
| n |
| 2n+1 |
| 1 |
| (2n+3)(2n+1) |
所以{Tn}是单调递增,故(Tn)min=T1=
| 1 |
| 3 |
由题意可知
| 1 |
| 3 |
| k |
| 57 |
点评:本题为数列和不等式的综合应用,涉及求数列的通项,数列的求和以及恒成立问题,数列题是高考中常考的题型,属中档题,有一定的难度;
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |