题目内容
10.直线y=kx+1,当实数k变化时,直线被椭圆$\frac{{x}^{2}}{4}$+y2=1截得的弦长范围是( )| A. | (0,3] | B. | (0,2)∪(2,$\frac{4\sqrt{3}}{3}$] | C. | (0,$\frac{4\sqrt{3}}{3}$] | D. | (2,$\frac{4\sqrt{3}}{3}$] |
分析 直线y=kx+1恒过定点P(0,1),且是椭圆的短轴上顶点,因而此直线被椭圆截得的弦长,即为点P与椭圆上任意一点Q的距离,设椭圆上任意一点Q(2cosθ,sinθ),利用三角函数即可得到结论.
解答 解:直线y=kx+1恒过定点P(0,1),且是椭圆的短轴上顶点,因而此直线被椭圆截得的弦长,即为点P与椭圆上任意一点Q的距离,设椭圆上任意一点Q(2cosθ,sinθ)
∴|PQ|2=(2cosθ)2+(sinθ-1)2=-3sin2θ-2sinθ+5
∴当sinθ=-$\frac{1}{3}$时,|PQ|2max=$\frac{16}{3}$
∴|PQ|max=$\frac{4\sqrt{3}}{3}$,直线被椭圆$\frac{{x}^{2}}{4}$+y2=1截得的弦长范围是:(0,$\frac{4\sqrt{3}}{3}$]
故选:C.
点评 本题考查直线与椭圆的位置关系,考查三角函数知识,解题的关键是将问题转化为点P与椭圆上任意一点Q的距离的最大值.
练习册系列答案
相关题目
15.已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有x•f′(x)+f(x)<0,则不等式f(x)<0的解集是( )
| A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(0,2) | D. | (-2,2)∪(2,+∞) |
19.函数y=x3+x的递增区间是( )
| A. | (0,+∞) | B. | (-∞,1) | C. | (1,+∞) | D. | (-∞,+∞) |