题目内容
设函数f(x)=2cosxsin(x+
)+2sinxcos(x+
).
(I)当x∈[0,
]时,求f(x)的值域;
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
,△ABC面积为
,求b+c.
| π |
| 6 |
| π |
| 6 |
(I)当x∈[0,
| π |
| 2 |
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
| 7 |
3
| ||
| 2 |
分析:(1)利用两角和的正弦公式化简函数的解析式为2sin(2x+
),根据x的范围,求得角(2x+
)的正弦值,从而求得f(x)的值域.
(2)根据f(A)=2sin(2A+
)=1,求得A的值,根据△ABC的面积S=
,求得bc的值,再由余弦定理求得b+c.
| π |
| 6 |
| π |
| 6 |
(2)根据f(A)=2sin(2A+
| π |
| 6 |
3
| ||
| 2 |
解答:解:(1)函数f(x)=2cosxsin(x+
)+2sinxcos(x+
)=2sin(2x+
),
当x∈[0,
]时,2x+
∈[
,
],-
≤sin(2x+
)≤1,
所以f(x)的值域为[-1,2].
(2)∵f(A)=2sin(2A+
)=1,所以,sin(2A+
)=
,所以A=
.
故△ABC的面积S=
bcsinA=
bc=
,所以bc=6.
又由余弦定理可得 a2=b2+c2-2bccosA=b2+c2-6,所以b2+c2=13,
(b+c)2-2bc=13,所以b+c=5.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
当x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
所以f(x)的值域为[-1,2].
(2)∵f(A)=2sin(2A+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
故△ABC的面积S=
| 1 |
| 2 |
| ||
| 4 |
3
| ||
| 2 |
又由余弦定理可得 a2=b2+c2-2bccosA=b2+c2-6,所以b2+c2=13,
(b+c)2-2bc=13,所以b+c=5.
点评:本题主要考查两角和的正弦公式,正弦函数的定义域和值域,根据三角函数的值求角,余弦定理的应用,属于中档题.
练习册系列答案
相关题目