题目内容
数列{an}中,a1=1,an=
an-1+1(n≥2),求通项公式an.
| 1 |
| 2 |
由an=
an-1+1,得an-2=
(an-1-2).
令bn=an-2,则bn-1=an-1-2,
∴有bn=
bn-1.
∴bn=
bn-1=
•
bn-2
=
•
•
bn-3
=
×
×
… ×
b1=(
)n-1•b1.
∵a1=1,∴b1=a1-2=-1.
∴bn=-(
)n-1.
∴an=2-
.
| 1 |
| 2 |
| 1 |
| 2 |
令bn=an-2,则bn-1=an-1-2,
∴有bn=
| 1 |
| 2 |
∴bn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵a1=1,∴b1=a1-2=-1.
∴bn=-(
| 1 |
| 2 |
∴an=2-
| 1 |
| 2n-1 |
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|