题目内容

已知A(-1,-1),B(2,0),C(1,2),则△ABC中AB边上的高所在的直线方程为
 
分析:利用斜率坐标公式求出直线AB的斜率,再根据垂直关系求出AB边上的高线的斜率,然后根据点斜式方程求直线方程即可.
解答:解:KAB=
0+1
2+1
=
1
3
,∴AB边上的高线的斜率K=-3,
∴AB边上的高线的点斜式方程为:y-2=-3(x-1),即3x+y-5=0.
故答案是3x+y-5=0.
点评:本题考查直线的斜率坐标公式、直线的点斜式方程及直线垂直的条件.两条直线垂直(斜率存在且不为0),其斜率之积为-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网