题目内容
已知定义在R上的函数f(x)为奇函数,且在[0,+∞)递增,对任意的实数θ∈R,是否存在这样的实数m,使得f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有的θ都成立?若存在,求出m的取值范围;若不存在,请说明理由.
分析:根据f(x)为奇函数,可得到函数f(x)在R上的单调性,且f(0)=0,原不等式可化为f(cos2θ-3)>f(2mcosθ-4m),即cos2θ-3>2mcosθ-4m,令t=cosθ,原不等式可转化为t∈[-1,1]时,是否存在m∈R,使得g(t)=t2-mt+2m-2>0恒成立,将m分离出来利用基本不等式即可求出m的取值范围.
解答:解:∵f(x)为奇函数,且在[0,+∞)上是增函数,则f(x)在R上为增函数,且f(0)=0,
所以原不等式可化为f(cos2θ-3)>f(2mcosθ-4m),∴cos2θ-3>2mcosθ-4m,即∴cos2θ-mcosθ+2m-2>0.
令t=cosθ,则原不等式可转化为:
当t∈[-1,1]时,是否存在m∈R,使得g(t)=t2-mt+2m-2>0恒成立.
由t2-mt+2m-2>0,t∈[-1,1],得m>
=t-2+
+4,t∈[-1,1]时,
令h(t)=(2-t)+
≥2
,即当且仅当t=2-
时,h(t)min=2
,
故m>(t-2+
+4)max=4-2
.
即存在这样的m,且m∈(4-2
,+∞).
所以原不等式可化为f(cos2θ-3)>f(2mcosθ-4m),∴cos2θ-3>2mcosθ-4m,即∴cos2θ-mcosθ+2m-2>0.
令t=cosθ,则原不等式可转化为:
当t∈[-1,1]时,是否存在m∈R,使得g(t)=t2-mt+2m-2>0恒成立.
由t2-mt+2m-2>0,t∈[-1,1],得m>
| 2-t2 |
| 2-t |
| 2 |
| t-2 |
令h(t)=(2-t)+
| 2 |
| 2-t |
| 2 |
| 2 |
| 2 |
故m>(t-2+
| 2 |
| t-2 |
| 2 |
即存在这样的m,且m∈(4-2
| 2 |
点评:本题主要考查了函数的奇偶性和单调性,以及利用基本不等式求最值,同时考查了转化的思想,属于中档题.
练习册系列答案
相关题目
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=( )
| A、0 | B、2013 | C、3 | D、-2013 |