题目内容
已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足bn2=anan+1(n∈N*).若 {bn}是公比为
的等比数列
(1)求{an}的通项公式;
(2)若a=
,Sn为{an}的前n项和,记Tn=
设Tn0为数列{Tn}的最大项,求n0.
| 2 |
(1)求{an}的通项公式;
(2)若a=
| 2 |
| 17Sn-S2n |
| an+1 |
(1)
=
=
=2,
又∵a1=1,a2=a(a>0),
∴an=
.
(2)若a=
,则an=(
)n-1(n∈N*),则{an}为等比数列,公比为
,
所以Sn=
=
.
Tn=
=
[(
)n+
-17]≤
(8-17)=9(
+1).
等号当且仅当(
)n=
,即n=4时取到,
n0=4.
| bn+12 |
| bn2 |
| an+1an+2 |
| anan+1 |
| an+2 |
| an |
又∵a1=1,a2=a(a>0),
∴an=
|
(2)若a=
| 2 |
| 2 |
| 2 |
所以Sn=
1×[1-(
| ||
1-
|
1-(
| ||
1-
|
Tn=
| 17Sn-S2n |
| an+1 |
| 1 | ||
1-
|
| 2 |
| 16 | ||
(
|
| 1 | ||
1-
|
| 2 |
等号当且仅当(
| 2 |
| 16 | ||
(
|
n0=4.
练习册系列答案
相关题目