题目内容
从7人中选出3人分别担任学习委员、劳动委员、体育委员,则甲、乙两人至少有一人入选的不同选法种数共有( )
分析:由题意甲、乙两人只有一人入选与甲、乙两人都入选两种情况,确定入选人数然后安排职务.
解答:解:甲、乙两人至少有一人入选,包含甲、乙两人只有一人入选与甲、乙两人都入选两种情况,
当甲、乙两人只有一人入选时,需要从甲与乙之外的5人选2人,然后排列,所以安排方案:2
.
当甲、乙两人都入选两种情况,需要从甲与乙之外的5人选1人,然后排列,所以安排方案:
.
共有不同的方案有:2
+
.
故选:D.
当甲、乙两人只有一人入选时,需要从甲与乙之外的5人选2人,然后排列,所以安排方案:2
| C | 2 5 |
| A | 3 3 |
当甲、乙两人都入选两种情况,需要从甲与乙之外的5人选1人,然后排列,所以安排方案:
| C | 1 5 |
| A | 3 3 |
共有不同的方案有:2
| C | 2 5 |
| A | 3 3 |
| C | 1 5 |
| A | 3 3 |
故选:D.
点评:本题考查有条件的排列组合问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.排列与组合问题要区分开,若题目要求元素的顺序则是排列问题.
练习册系列答案
相关题目