题目内容
已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1和F2,下顶点为A,直线AF1与椭圆的另一个交点为B,△ABF2的周长为8,直线AF1被圆O:x2+y2=b2截得的弦长为3.
(I)求椭圆C的方程;
(II)若过点P(1,3)的动直线l与圆O相交于不同的两点C,D,在线段CD上取一点Q满足:
=-λ
,
=λ
,λ≠0且λ≠±1.求证:点Q总在某定直线上.
| x2 |
| a2 |
| y2 |
| b2 |
(I)求椭圆C的方程;
(II)若过点P(1,3)的动直线l与圆O相交于不同的两点C,D,在线段CD上取一点Q满足:
| CP |
| PD |
| CQ |
| QD |
(I)∵△ABF2的周长为8,∴4a=8,∴a=2
∵F1(-c,0),A(0,-b),∴直线AF1的方程为
+
=1,即bx+cy+bc=0
∵直线AF1被圆O:x2+y2=b2截得的弦长为3,O到直线AF1的距离d=
=
.
∴(
)2+
=b2
∴b2c2+9=4b2
∵c2=4-b2,∴b2=3
∴椭圆C的方程为
+
=1;
(II)证明:设C(x1,y1),D(x2,y2),Q(x,y),
∵
=-λ
,∴(1-x1,3-y1)=-λ(x2-1,y2-3)
∴
,即
同理
(1)×(3),得
-λ2
=(1-λ2)x(5)
(2)×(4),得
-λ2
=3(1-λ2)y(6)
(5)+(6),得
+
-λ2(
+
)=(1-λ2)(x+3y)
∵C,D在圆O上,∴
+
=3,
+
=3
∴3(1-λ2)=(1-λ2)(x+3y)
∵λ≠±1,∴x+3y=3
∴点Q总在定直线x+3y-3=0上.
∵F1(-c,0),A(0,-b),∴直线AF1的方程为
| x |
| -c |
| y |
| -b |
∵直线AF1被圆O:x2+y2=b2截得的弦长为3,O到直线AF1的距离d=
| bc | ||
|
| bc |
| 2 |
∴(
| bc |
| 2 |
| 9 |
| 4 |
∴b2c2+9=4b2
∵c2=4-b2,∴b2=3
∴椭圆C的方程为
| x2 |
| 4 |
| y2 |
| 3 |
(II)证明:设C(x1,y1),D(x2,y2),Q(x,y),
∵
| CP |
| PD |
∴
|
|
同理
|
(1)×(3),得
| x | 21 |
| x | 22 |
(2)×(4),得
| y | 21 |
| y | 22 |
(5)+(6),得
| x | 21 |
| y | 21 |
| x | 22 |
| y | 22 |
∵C,D在圆O上,∴
| x | 21 |
| y | 21 |
| x | 22 |
| y | 22 |
∴3(1-λ2)=(1-λ2)(x+3y)
∵λ≠±1,∴x+3y=3
∴点Q总在定直线x+3y-3=0上.
练习册系列答案
相关题目