题目内容
设函数f(x)=m-
,若存在实数a、b(a<b),使f(x)在[a,b]上的值域为[a,b],则实数m的取值范围是( )
| x+3 |
A.(-
| B.[-2,-
| C.[-3,-
| D.[-
|
由x+3≥0可得x≥-3,又由复合函数的单调性可知函数为减函数,
故有f(a)=m-
=b,f(b)=m-
=a,
两式相减可得
-
=a-b,即
-
=(a+3)-(b+3),
即
+
=1,两式相加可得2m=a+b+
+
=a+b+1,
记p=
,q=
,故有p+q=1,a=p2-3,b=q2-3=(1-p)2-3,
代入可得m=
=p2-p-2=(p-
)2-
,
又因为p+q=1且pq均为非负数,故0≤p≤1,由二次函数的值域可得:
当p=
时,q=
,与a<b矛盾,m取不到最小值-
,当p=0或1时,m取最大值-2,
故m的范围是(-
,-2],
故选A
故有f(a)=m-
| a+3 |
| b+3 |
两式相减可得
| a+3 |
| b+3 |
| a+3 |
| b+3 |
即
| a+3 |
| b+3 |
| a+3 |
| b+3 |
记p=
| a+3 |
| b+3 |
代入可得m=
| a+b+1 |
| 2 |
| 1 |
| 2 |
| 9 |
| 4 |
又因为p+q=1且pq均为非负数,故0≤p≤1,由二次函数的值域可得:
当p=
| 1 |
| 2 |
| 1 |
| 2 |
| 9 |
| 4 |
故m的范围是(-
| 9 |
| 4 |
故选A
练习册系列答案
相关题目