题目内容
正数数列{an}的前n项的和为Sn且2(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项的和记为Bn,求证Bn<
.
(1)解:∵Sn=(an+
)2,①
S n-1=
,②
∴①-②得(an+an-1)(an-a n-1-2)=0.
∴an-a n-1=2.
a1=S1=(
)2,∴a1=1.
∴an=2n-1.
(2)证明:bn=
,
Bn=![]()
练习册系列答案
相关题目
题目内容
正数数列{an}的前n项的和为Sn且2(1)求数列{an}的通项公式;
(2)设bn=
,数列{bn}的前n项的和记为Bn,求证Bn<
.
(1)解:∵Sn=(an+
)2,①
S n-1=
,②
∴①-②得(an+an-1)(an-a n-1-2)=0.
∴an-a n-1=2.
a1=S1=(
)2,∴a1=1.
∴an=2n-1.
(2)证明:bn=
,
Bn=![]()