题目内容
下列函数中,最小正周期为且图象关于原点对称的函数是
A
如图,O为等腰三角形ABC内一点,圆O与ABC的底边BC交于M、N两点与底边上的高AD交于点G,且与AB、AC分别相切于E、F两点.
(1)证明:EF平行于BC
(2) 若AG等于圆O的半径,且AE=MN=,求四边形EBCF的面积。
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费,和年销售量的数据作了初步处理,得到下面的散点图及一些统计量的值.
(I)根据散点图判断,与,哪一个宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:
(i)当年宣传费时,年销售量及年利润的预报值时多少?
(ii)当年宣传费为何值时,年利润的预报值最大?
已知(2,0)是双曲线=1(b>0)的一个焦点,则b=.
设函数f(x)= ,k>0
(I)求f(x)的单调区间和极值;
(II)证明:若f(x)存在零点,则f(x)在区间(1,)上仅有一个零点。
如果函数在区间单调递减,则mn的最大值为
(A)16 (B)18 (C)25 (D)
设数列的前项和,且成等差数列
(1)求数列的通项公式;
(2)记数列的前n项和,求得成立的n的最小值。
执行如图所示的程序框图(算法流程图),输出的为
函数的零点个数为 .