题目内容

已知定义在R上的函数f(x)=ax3+bx2+cx+d(a,b,c,d,∈R)的图象关于原点对称,且x=1时,f(x)取极小值-
2
5

(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象上是否存在两点,使得在此两点处的切线互相垂直?证明你的结论.
(I)因为图象关于原点对称,所以f(x)为奇函数,所以b=0,d=0;
所以f(x)=ax3+cx,因此f'(x)=3ax2+c
由题意得
f(1)=a+c=-
2
5
f′(1)=3a+c=0

解得 a=
1
5
,c=-
3
5

所以f(x)=
1
5
x 3-
3
5
x

(II)不存在.
证明:假设存在x1,x2,则f'(x1)•f'(x2)=-1
所以(x12-1)(x22-1)=-4
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-4
所以不存在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网