题目内容

已知U=R,且A={x|x2-x-12≤0},B={x|x2-4x-5>0},求:
(1)A∩B
(2)A∪B
(3)CUA∩CUB.
分析:(1)求出集合A,B,然后直接求A∩B;
(2)直接求出A∪B即可.
(3)通过(1)求出CUA,CUB.然后求出CUA∩CUB.
解答:解:(1)A={x|-3≤x≤4},B={x|x<-1或x>5}
∴A∩B={x|-3≤x≤4}∩{x|x<-1或x>5}={x|-3≤x<-1}
(2)A∪B={x|-3≤x≤4}∪{x|x<-1或x>5}={x|x≤4或x>5}
(3)CUA={x|x<-3或x>4},CUB={x|-1≤x≤5};
CUA∩CUB={x|x<-3或x>4}∩{x|-1≤x≤5}={x|4<x≤5}
点评:本题是基础题,考查集合的基本运算,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网