题目内容
已知函数
和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间
内总存在m+1个实数a1,a2,…,am,a m+1,使得不等式g(a1)+g(a2)+…+g(am)<g(a m+1)成立,求m的最大值.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间
解:(Ⅰ)设M、N两点的横坐标分别为x1、x2,
∵
,
∴切线PM的方程为:
,
又∵切线PM过点P(1,0),
∴有
,即x12+2tx1﹣t=0,(1)
同理,由切线PN也过点P(1,0),得x22+2tx2﹣t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx﹣t=0的两根,
∴
(*)
=
,把(*)式代入,得
,
因此,函数g(t)的表达式为
.
(Ⅱ)当点M、N与A共线时,kMA=kNA,
∴
=
,即
=
,
化简,得(x2﹣x1)[t(x2+x1)﹣x1x2]=0
∵x1≠x2,
∴t(x2+x1)=x2x1.(3)
把(*)式代入(3),解得
.
∴存在t,使得点M、N与A三点共线,且
.
(Ⅲ)知g(t)在区间
上为增函数,
∴
(i=1,2,...,m+1),则
.依题意,不等式
对一切的正整数n恒成立,
,即
对一切的正整数n恒成立.
∵
,
∴
,
∴
.由于m为正整数,∴m≤6.
又当m=6时,存在a1=a2═am=2,a m+1=16,对所有的n满足条件.
因此,m的最大值为6.
∵
∴切线PM的方程为:
又∵切线PM过点P(1,0),
∴有
同理,由切线PN也过点P(1,0),得x22+2tx2﹣t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx﹣t=0的两根,
∴
因此,函数g(t)的表达式为
(Ⅱ)当点M、N与A共线时,kMA=kNA,
∴
化简,得(x2﹣x1)[t(x2+x1)﹣x1x2]=0
∵x1≠x2,
∴t(x2+x1)=x2x1.(3)
把(*)式代入(3),解得
∴存在t,使得点M、N与A三点共线,且
(Ⅲ)知g(t)在区间
∴
∵
∴
∴
又当m=6时,存在a1=a2═am=2,a m+1=16,对所有的n满足条件.
因此,m的最大值为6.
练习册系列答案
相关题目