题目内容
分析:先延长DE、BA交于P,CP是二面角的棱,再由题意利用二面角的定义得到二面角的平面角,然后在三角形中解出即可.
解答:
解:延长DE、BA交于P,CP是二面角的棱,
在三角形PBC中,
∵CA=PA=AB,
∴∠PCB=90°,
又AE⊥面ABC,BD∥AE,
∴BD⊥面ABC,
∴BC⊥PC
∴∠DCB是二面角的平面角,
在直角三角形BCD中,
∠DCB=45°,
∴面CDE与面CAB所成的锐二面角为45°.
在三角形PBC中,
∵CA=PA=AB,
∴∠PCB=90°,
又AE⊥面ABC,BD∥AE,
∴BD⊥面ABC,
∴BC⊥PC
∴∠DCB是二面角的平面角,
在直角三角形BCD中,
∠DCB=45°,
∴面CDE与面CAB所成的锐二面角为45°.
点评:本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力.
练习册系列答案
相关题目