题目内容
已知数列{an}的前n项的和Sn,满足| 3 |
| 2 |
(1)求数列{an}的通项公式.
(2)设Tn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| k |
| 10 |
| k+1 |
| 10 |
分析:(1)当n≥3时,由
an=Sn+2+(-1)n(n∈N*)①得到
an-1=Sn-1+2+(-1)n-1②,①-②得到an+(-1)n+1=
3(an-1+(-1)n).所以{an+(-1)n+1}是等比数列.求出等比数列的通项即可得到an的通项公式;
(2)当k为偶数时,且当n≥3时,讨论n为奇数化简Tn得到小于
;当n为奇数时,化简Tn也小于
,所以这样的k存在,且根据
=
求得k=6.
| 3 |
| 2 |
| 3 |
| 2 |
3(an-1+(-1)n).所以{an+(-1)n+1}是等比数列.求出等比数列的通项即可得到an的通项公式;
(2)当k为偶数时,且当n≥3时,讨论n为奇数化简Tn得到小于
| 7 |
| 10 |
| 7 |
| 10 |
| k+1 |
| 10 |
| 7 |
| 10 |
解答:解:(1)n≥3时,由
an=Sn+2+(-1)n(n∈N*),
得
an-1=Sn-1+2+(-1)n-1.
相减,得an=3an-1+4(-1)n(n≥2),
∴an+(-1)n+1=3(an-1+(-1)n).
∴{an+(-1)n+1}是等比数列.
∴an+(-1)n+1=3n,
∴an=3n+(-1)n.
(2)Tn=
+
+
+…+
=
+
+
+…+
当k为偶数时,
+
=
+
<
=
+
.
当n为奇数且n≥3时,Tn=
+
+
+…+
=
+
+
+…+
<
+
+
+…+
=
+
(1-
)<
+
<
当n为偶数且n≥3时,Tn=
+
+
+…+
<
<
所以存在k=6.
| 3 |
| 2 |
得
| 3 |
| 2 |
相减,得an=3an-1+4(-1)n(n≥2),
∴an+(-1)n+1=3(an-1+(-1)n).
∴{an+(-1)n+1}是等比数列.
∴an+(-1)n+1=3n,
∴an=3n+(-1)n.
(2)Tn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 26 |
| 1 |
| 3n+(-1)n |
当k为偶数时,
| 1 |
| 3k+(-1)k |
| 1 |
| 3k+1+(-1)k+1 |
| 1 |
| 3k+1 |
| 1 |
| 3k+1-1 |
| 3k+3k+1 |
| 3k3k+1 |
| 1 |
| 3k |
| 1 |
| 3k+1 |
当n为奇数且n≥3时,Tn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 26 |
| 1 |
| 3n+(-1)n |
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3n-1 |
| 1 |
| 2 |
| 1 |
| 6 |
| 7 |
| 10 |
当n为偶数且n≥3时,Tn=
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 26 |
| 1 |
| 3n+(-1)n |
| n+1 |
| i=1 |
| 1 |
| ai |
| 7 |
| 10 |
所以存在k=6.
点评:考查学生会根据做差法得出数列的通项公式,会求等比数列的前n项的和,会分情况讨论证明不等式.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |