题目内容
已知数列{an}的前n项和Sn=n2.
(I)求数列{an}的通项公式;
(II)设an=2nbn,求数列{bn}的前n项和Tn.
(I)求数列{an}的通项公式;
(II)设an=2nbn,求数列{bn}的前n项和Tn.
(I)当n=1时,a1=S1=1,
∴an=2n-1.
(II)由an=2nbn=2n-1,得bn=
,Tn=
+
+
+…+
,①2Tn=1+
+
+…+
,②
②-①,得Tn=1+1+
+
+…+
-
=3-
.
|
(II)由an=2nbn=2n-1,得bn=
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
②-①,得Tn=1+1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
| 2n+3 |
| 2n |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |