题目内容

(本题满分15分)

已知椭圆的离心率为,椭圆的左、右两个顶点分别为A,B,AB=4,直线与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2.

(1)求椭圆的方程;

(2)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;

(3)当t变化时,求圆C1与圆C2的面积的和S的最小值.

解:(1)由题意:可得:

故所求椭圆方程为:1           ………………………3分

(2)易得A的坐标(-2,0),B的坐标(2,0),M的坐标,N的坐标

线段AM的中点P

直线AM的斜率 ………………………………………5分

, 直线的斜率

直线的方程

的坐标为   同理的坐标为………………………… 8分  

,即无论t如何变化,为圆C1与圆C2的圆心距是定值.…………… 11分

(2)圆的半径为,圆的半径为

显然时,最小,.                          …………… 15分

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网