题目内容

已知A(2,3),B(4,-3),点P在直线AB上,且|
AP
|=
3
2
|
PB
|
,则点P的坐标为(  )
分析:设出点P的坐标,求出两个向量
AP
PB
的坐标,由两个向量共线和模的关系列式后联立可求点P的坐标.
解答:解:设P(x,y),因为A(2,3),B(4,-3),
所以
AP
=(x-2,y-3),
PB
=(4-x,-3-y)

又因为点P在直线AB上,所以
AP
PB
共线,
则(x-2)(-3-y)-(4-x)(y-3)=0,
整理得3x+y-9=0①
|
AP
|=
3
2
|
PB
|
,所以4[(x-2)2+(y-3)2]=9[(4-x)2+(-3-y)2],
整理得5x2+5y2-56x+78y+173=0②
联立①②解得,
x=
16
5
y=-
3
5
x=8
y=-15

所以点P的坐标为(
16
5
,-
3
5
)
或(8,-15).
故选C.
点评:本题考查了平面向量平行的坐标表示,考查了二元二次方程组的解法,训练了学生的计算能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网