题目内容
已知各项均为正数的数列{an}的前n项和为Sn,满足S1>1,且6Sn=(an+1)(an+2),n∈N*,则数列{an}通项公式为an=
3n-1
3n-1
.分析:由已知可得6Sn-1=(an-1+1)(an-1+2),两式相减可得,an-an-1=3,结合等差数列的通项公式可求
解答:解:∵6Sn=(an+1)(an+2),n∈N*
∴6Sn-1=(an-1+1)(an-1+2)
两式相减可得,6Sn-6Sn-1
=an2+3an+2-an-12-3an-1-2
∴6an=an2+3an+2-an-12-3an-1-2
∴an2-an-12-3an-3an-1=0
∴(an-an-1-3)(an+an-1)=0
∵an>0
∴an-an-1=3
∵6S1=(a1+1)(a1+2),S1>1
∴a1=2
∴{an}是以2为首项,以3为公差的等差数列
∴an=2+3(n-1)=3n-1
故答案为:3n-1
∴6Sn-1=(an-1+1)(an-1+2)
两式相减可得,6Sn-6Sn-1
=an2+3an+2-an-12-3an-1-2
∴6an=an2+3an+2-an-12-3an-1-2
∴an2-an-12-3an-3an-1=0
∴(an-an-1-3)(an+an-1)=0
∵an>0
∴an-an-1=3
∵6S1=(a1+1)(a1+2),S1>1
∴a1=2
∴{an}是以2为首项,以3为公差的等差数列
∴an=2+3(n-1)=3n-1
故答案为:3n-1
点评:本题主要考查了利用递推公式an=
求解数列的通项公式,属于基础试题
|
练习册系列答案
相关题目