题目内容
曲线y=-x3+3x2在点(1,2)处的切线方程为( )
| A.y=3x-1 | B.y=-3x+5 | C.y=3x+5 | D.y=2x |
∵y=-x3+3x2∴y'=-3x2+6x,
∴y'|x=1=(-3x2+6x)|x=1=3,
∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),
即y=3x-1,
故选A.
∴y'|x=1=(-3x2+6x)|x=1=3,
∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),
即y=3x-1,
故选A.
练习册系列答案
相关题目
设点P是曲线y=x3-
x+
上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是( )
| 3 |
| 3 |
| 5 |
A、[0,
| ||||
B、[0,
| ||||
C、(
| ||||
D、[
|