题目内容

已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
π
6
)|
对x∈R恒成立,且f(
π
2
)>f(π)
,则f(x)的单调递增区间是______.
f(x)≤|f(
π
6
)|
对x∈R恒成立,
则f(
π
6
)等于函数的最大值或最小值,
即2×
π
6
+φ=kπ+
π
2
,k∈Z,
则φ=kπ+
π
6
,k∈Z,
又f(
π
2
)>f(π),即sinφ<0,
令k=-1,此时φ=-
6
,满足条件sinφ<0,
令2x-
6
∈[2kπ-
π
2
,2kπ+
π
2
],k∈Z,
解得x∈[kπ+
π
6
,kπ+
3
](k∈Z)

则f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z)

故答案为:[kπ+
π
6
,kπ+
3
](k∈Z)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网