题目内容
若函数f(x)=(a2-4a+4)x+2a-6的图象经过第二、三、四象限,则a的取值范围是________.
(1,2)∪(2,
)
分析:由函数f(x)的图象过二、三、四象限,知底数a2-4a+4∈(0,1),数2a-6<-1,从而求得a的取值范围.
解答:∵函数f(x)=(a2-4a+4)x+2a-6的图象经过第二、三、四象限,
∴
;解,得
;
即1<a<2,或2<a<
;
∴a的取值范围是(1,2)∪(2,
);
故答案为:(1,2)∪(2,
).
点评:本题考查了指数函数的图象和性质,是基础题.
分析:由函数f(x)的图象过二、三、四象限,知底数a2-4a+4∈(0,1),数2a-6<-1,从而求得a的取值范围.
解答:∵函数f(x)=(a2-4a+4)x+2a-6的图象经过第二、三、四象限,
∴
即1<a<2,或2<a<
∴a的取值范围是(1,2)∪(2,
故答案为:(1,2)∪(2,
点评:本题考查了指数函数的图象和性质,是基础题.
练习册系列答案
相关题目